
Postmortem: Hephaestus
A VR based Architectural Drawing Tool



Chandan Singh

Head – VR

Bonnie Mathew

Lead – Engineering

Hello!



What is Hephaestus?

● Hephaestus - the Greek god of craftsmanship

● A POC to test validity of VR for creating architectural designs

● 5 person dev team, 3 months dev time



Why did we build Hephaestus?



Why did we build Hephaestus?

● Existing CAD tools aren’t good for visualization

● Tons of errors, tools don’t help here much

● Collaboration is a pain



Hephaestus Design Goals



Ease of use & visualization

● It should be easier to use than existing Architectural CAD tools

● VR is naturally suited for tasks like these

● Learning to use such tools is easier in VR

● Scale - true to the real world



No errors, clean data

● Every object has volume

● Objects can’t intersect

● Objects have to be on a surface or attached to a surface



Compatibility with the ecosystem

● Data export to 2D and 3D formats

● Store data in a clean format that makes conversion possible



Demo



What went right?



Code Architecture

● Proper design was done before the implementation. 

● Design fit well with Unity’s component based design model

○ Composition over inheritance

● Extensively used design patterns - Strategy, Memento, State Pattern, 
Composite, Factory etc.



● Save the session and reload the session next time

● Serializer/Deserializer included in every .NET/Mono installation

● Runtime import from disk and export to disk happens parallely in different 
thread

○ Carefully designed the data structures and importer so as to have minimum 

dependency on the main thread.

Session Data Management



● All actions in the VR workspace are done via tools

● Robust design to add various drawing tools

○ ToolsManager to handle various tools

○ DrawTools , AnnotateTools, MeasureTools, Object Creation Tools, Object Manipulation 
Tools

● Tools gets input events from the InputHandling module in the form of 
OnPressed(), OnReleased(), OnPressMove() etc

● Excellent procedural mesh support by Unity

○ ~ 90% procedural meshes

○ Had to re-calculate bounding meshes in order to support accurate physics behaviour

Drawing and design tools



● Each action performed by tool is saved as a state in stack

● Allows for non-destructive workflow

● Allows for Undo & Redo

Action History





● Whenever possible, we didn’t allow the user to make mistakes

● Grid and snapping tools to make precise adjustments

● Physics and constraints to ensure results are valid

● Tools to help the user to make informed decisions

Error proofing



● Rock solid 90 FPS all the time

● 8x MSAA

● Not a single complain about sickness

Performance in VR and user comfort



● Excellent readability

● Tooltips

● Helpers for in-world widgets

● Accessible to people with experience with 3D applications

The UI







● User’s scene and actions shared with client devices via network messages

● View the scene and camera even if not in VR

● Annotate objects and comments in world space

● Works on PC and mobile devices

Collaboration



● Dynamic time of day system (plugin from Asset Store)

● 1 dynamic shadow-casting directional light

● Fresnel based additional highlight to make objects ‘pop’

World and object rendering



Unity3D standard 

shader



Hephaestus 

custom shader



● Really good for quick prototyping

● Easy to pick up, none of the programmers had prior Unity experience

● Asset store plugins came in handy

● Scaling across platforms is simple

Unity3D game engine



What went wrong?



● Not enough time spent iterating on UI

● None of the UI panels had a close button

● Had a learning curve for Architects, Civil Engineers and ‘old school’ people

● Traditional transformation gizmos don’t work well

The UI





● Used CSG for creating complex shapes

● Booleans are complex operations!

● Repeated boolean operations resulted in the meshes bigger than 64K

● Boolean operations resulted in concave meshes, Mesh colliders don’t work 
well on concave meshes

● Unity Asset store has lot of CSG tools but none of them work at runtime

Mesh operations



● Didn’t consider collaboration and network support at the start

● Had to refactor lot of code later for network support

● Limitation of network packet size greater than 64K

Collaboration



● Exporting to CAD turned out to be tricky

● Top down screenshot with edged outlines and dimensions

● Not perfect, but gets the job done for a POC

Exporting data



“CAD” output from 

Hephaestus



● Spent a lot of time developing, not enough testing

● Example: creating objects bigger than yourself

● Dev team didn’t had architectural experience

● Didn’t take it to the end-users to take feedback till fairly late

Not enough user testing



● VR is definitely the way forward for the AEC industry

● People aren’t ready to give up existing tools yet

● Prototyping greatly helps to decide

Conclusion



Questions?



Thank you!

PS: We are hiring!
careers@smartvizx.com


